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Basic Concepts Behind Indexing
• Indexing mechanisms used to speed up access to desired data.

– E.g., author catalog in library
• Search Key - attribute to set of attributes used to look up records 

in a file.
• An index file consists of records (called index entries) of the 

form

• Index files are typically much smaller than the original file.
• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order
– Hash indices: search keys are distributed uniformly across 

“buckets” using a “hash function”. 

search-key pointer
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Index Evaluation Metrics
• Access types: The types of access that are efficiently supported.    

– Finding records with a specified attribute value.

– Finding records with an attribute value falling in a specified range of 
values.

• Access time: The time required to find a particular data item, or set of items.

• Insertion time: The time it takes to insert a new data item.  This value 
includes the time required to find the correct place to insert, as well as the 
time required to update the index structure.

• Deletion time: The time it takes to delete a data item.  This value includes the 
time required to find the item, as well as the time required to update the index 
structure.

• Space overhead: The additional space required by an index structure.  
Provided that the amount of additional space is moderate, it is usually 
worthwhile to sacrifice the space to achieve improved performance.
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Ordered Indices
• In an ordered index, index entries are stored sorted on the search key 

value.  E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search 
key specifies the sequential order of the file.
– Also called clustering index

– The search key of a primary index is usually but not necessarily the 
primary key.

• Secondary index: an index whose search key specifies an order 
different from the sequential order of the file.  Also called 
non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

• One of the oldest index schemes used in database systems.  Designed 
for applications that require both sequential processing of entire files as 
well as random access to individual records.
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Dense Index Files
• Dense index — Index record appears for every search-key value 

in the file. 



COP 4710: Indexing Page 6 Mark Llewellyn ©

Sparse Index Files
• Sparse Index:  contains index records for only some search-key 

values.
– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:
– Find index record with largest search-key value < K
– Search file sequentially starting at the record to which the index 

record points
• Less space and less maintenance overhead for insertions and 

deletions.
• Generally slower than dense index for locating records.
• Good tradeoff: sparse index with an index entry for every block in 

file, corresponding to least search-key value in the block.
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Example of Sparse Index Files
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Multi-level Indexing
• If primary index does not fit in memory, access becomes 

expensive.

• To reduce number of disk accesses to index records, treat 
primary index kept on disk as a sequential file and construct a 
sparse index on it.
– outer index – a sparse index of primary index

– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet 
another level of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion 
from the file.
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Example of 
Multi-level 
Indexing
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Index Update:  Deletion

• If deleted record was the only record in the file with its particular 
search-key value, the search-key is deleted from the index also.

• Single-level index deletion:

– Dense indices – deletion of search-key is similar to file record 
deletion.

– Sparse indices – if an entry for the search key exists in the 
index, it is deleted by replacing the entry in the index with the 
next search-key value in the file (in search-key order).  If the 
next search-key value already has an index entry, the entry is 
deleted instead of being replaced.
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Index Update:  Insertion
• Single-level index insertion:

– Perform a lookup using the search-key value appearing in the 
record to be inserted.

– Dense indices – if the search-key value does not appear in the 
index, insert it.

– Sparse indices – if index stores an entry for each block of the 
file, no change needs to be made to the index unless a new 
block is created.  In this case, the first search-key value 
appearing in the new block is inserted into the index.

• Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms
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Secondary Indices

• Frequently, one wants to find all the records whose values in a 
certain field (which is not the search-key of the primary index) 
that satisfy some condition.

– Example 1: In the account database stored sequentially by 
account number, we may want to find all accounts in a 
particular branch.

– Example 2: as above, but where we want to find all 
accounts with a specified balance or range of balances.

• We can have a secondary index with an index record for each 
search-key value; index record points to a bucket that contains 
pointers to all the actual records with that particular search-key 
value.
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Secondary Index on balance field of account
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Primary and Secondary Indices

• Secondary indices must be dense.

• Indices offer substantial benefits when searching for records.

• When a file is modified, every index on the file must be 
updated, Updating indices imposes overhead on database 
modification.

• Sequential scan using primary index is efficient, but a 
sequential scan using a secondary index is expensive 

– each record access may fetch a new block from disk
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B+-Tree Index Files
• B+-tree indices are an alternative to indexed-sequential files.

• Disadvantage of indexed-sequential files: performance degrades 
as file grows, since many overflow blocks get created.  Periodic
reorganization of entire file is required.

• Advantage of B+-tree index files:  automatically reorganizes itself 
with small, local, changes, in the face of insertions and deletions.  
Reorganization of entire file is not required to maintain 
performance.

• Disadvantage of B+-trees: extra insertion/deletion overhead and 
space overhead.

• Advantages of B+-trees outweigh disadvantages, and they are 
used extensively.
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B+-Tree Index Files (cont.)

• A B+-tree is a rooted tree satisfying the following properties:
– All paths from root to leaf are of the same length (i.e., all leaves are on 

the same level).

– Each node that is not a root or a leaf holds k-1 keys and k references to 
subtrees where 

– A leaf node holds k–1 keys where

– Special cases: 

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it can 
have between 0 and (k–1) values.

⎡ ⎤ nk2/n ≤≤

⎡ ⎤ nk2/n ≤≤
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B+-Tree Node Structure
• Typical node

– Ki are the search-key values 

– Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes).

• The search-keys in a node are ordered 

K1 < K2 < K3 < . . . < Kn–1
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Leaf Nodes in B+-Trees
• For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with 

search-key value Ki, or to a bucket of pointers to file records, 
each record having search-key value Ki.  Only need bucket 
structure if search-key does not form a primary key.

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less 
than Lj’s search-key values

• Pn points to next leaf node in search-key order
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Non-Leaf Nodes in B+-Trees
• Non leaf nodes form a multi-level sparse index on the leaf nodes.  

For a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less 
than K1

– For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than 
Km–1
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Example of a B+-tree

B+-tree for account file (n = 3)
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Example of B+-tree

• Leaf nodes must have between 2 and 4 values 
(⎡(n–1)/2⎤ and n –1, with n = 5).

• Non-leaf nodes other than root must have between 3 and 5 
children (⎡(n/2⎤ and n with n =5).

• Root must have at least 2 children.

B+-tree for account file (n - 5)
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Observations about B+-trees
• Since the inter-node connections are done by pointers, “logically”

close blocks need not be “physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse 
indices.

• The B+-tree contains a relatively small number of levels 
(logarithmic in the size of the main file), thus searches can be
conducted efficiently.

• Insertions and deletions to the main file can be handled 
efficiently, as the index can be restructured in logarithmic time.
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Queries on B+-Trees
Find all records with a search-key value of k.

1. Start with the root node
1. Examine the node for the smallest search-key value > k.
2. If such a value exists, assume it is Kj.  Then follow Pi to 

the child node
3. Otherwise k ≥ Kn–1, where there are n pointers in the 

node.  Then follow Pn to the child node.
2. If the node reached by following the pointer above is not a 

leaf node, repeat the above procedure on the node, and 
follow the corresponding pointer.

3. Eventually reach a leaf node.  If for some i, key Ki = k  
follow pointer Pi to the desired record or bucket.  Else no 
record with search-key value k exists.
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Queries on B+-Trees (cont.)

• In processing a query, a path is traversed in the tree from the 
root to some leaf node.

• If there are K search-key values in the file, the path is no longer 
than ⎡ log⎡n/2⎤(K)⎤.

• A node is generally the same size as a disk block, typically 4 
KB, and n is typically around 100 (40 bytes per index entry).

• With 1 million search key values and n = 100, at most 
log50(1,000,000) = 4 nodes are accessed in a lookup.

• Contrast this with a balanced binary tree with 1 million search 
key values — around 20 nodes are accessed in a lookup
– above difference is significant since every node access may 

need a disk I/O, costing around 20 milliseconds!



COP 4710: Indexing Page 25 Mark Llewellyn ©

Updates on B+-Trees:  Insertion
• Find the leaf node in which the search-key value would appear

• If the search-key value is already there in the leaf node, record is 
added to file and if necessary a pointer is inserted into the bucket.

• If the search-key value is not there, then add the record to the 
main file and create a bucket if necessary.  Then:

– If there is room in the leaf node, insert (key-value, pointer) 
pair in the leaf node

– Otherwise, split the node (along with the new (key-value, 
pointer) entry) as discussed in the next slide.
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Updates on B+-Trees:  Insertion (cont.)

• Splitting a node:
– take the n(search-key value, pointer) pairs (including the one being inserted) 

in sorted order.  Place the first ⎡ n/2 ⎤ in the original node, and the rest in a 
new node.

– let the new node be p, and let k be the least key value in p.  Insert (k,p) in 
the parent of the node being split. If the parent is full, split it and propagate 
the split further up.

• The splitting of nodes proceeds upwards till a node that is not full is found.  In 
the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview into the B+-tree shown on page 20 (n = 3)
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Updates on B+-Trees:  Insertion (cont.)

before

Result of splitting node containing Brighton and Downtown on inserting Clearview

after
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Updates on B+-Trees: Deletion
• Find the record to be deleted, and remove it from the main file 

and from the bucket (if present)

• Remove (search-key value, pointer) from the leaf node if there is 
no bucket or if the bucket has become empty

• If the node has too few entries due to the removal, and the entries 
in the node and a sibling fit into a single node, then 

– Insert all the search-key values in the two nodes into a single 
node (the one on the left), and delete the other node.

– Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted 
node, from its parent, recursively using the above procedure.



COP 4710: Indexing Page 29 Mark Llewellyn ©

Updates on B+-Trees:  Deletion (cont.)

• Otherwise, if the node has too few entries due to the removal, and 
the entries in the node and a sibling fit into a single node, then

– Redistribute the pointers between the node and a sibling such 
that both have more than the minimum number of entries.

– Update the corresponding search-key value in the parent of the 
node.

• The node deletions may cascade upwards till a node which has  
⎡n/2 ⎤ or more pointers is found.  If the root node has only one 
pointer after deletion, it is deleted and the sole child becomes the 
root. 
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Examples of B+-Tree Deletion

Before

The removal of the leaf node containing “Downtown” did not result in its parent having 
too few pointers.  So the cascaded deletions stopped with the deleted leaf node’s 
parent.

After deleting “Downtown”
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Examples of B+-Tree Deletion (cont.)

• Node with “Perryridge” becomes underfull (actually empty, in this special case) and 
merged with its sibling.

• As a result “Perryridge” node’s parent became underfull, and was merged with its sibling 
(and an entry was deleted from their parent).

• Root node then had only one child, and was deleted and its child became the new root 
node.

Before

After deletion of “Perryridge”
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Example of B+-tree Deletion (cont.)

• Parent  of leaf containing Perryridge became underfull, and borrowed a pointer 
from its left sibling.

• Search-key value in the parent’s parent changes as a result.

After deletion of “Perryridge”

Before
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B+-Tree File Organization
• Index file degradation problem is solved by using B+-tree 

indices.  Data file degradation problem is solved by using B+-tree 
file organization.

• The leaf nodes in a B+-tree file organization store records, instead 
of pointers.

• Since records are larger than pointers, the maximum number of 
records that can be stored in a leaf node is less than the number 
of pointers in a nonleaf node.

• Leaf nodes are still required to be half full.

• Insertion and deletion are handled in the same way as insertion 
and deletion of entries in a B+-tree index.
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B+-Tree File Organization (cont.)

• Good space utilization important since records use more space than pointers.  
• To improve space utilization, involve more sibling nodes in redistribution 

during splits and merges
– Involving 2 siblings in redistribution (to avoid split / merge where possible) 

results in each node having at least     entries.

Example of B+-tree File Organization

⎣ ⎦3/2n
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Static Hashing
• A bucket is a unit of storage containing one or more records (a 

bucket is typically a disk block). 

• In a hash file organization we obtain the bucket of a record 
directly from its search-key value using a hash function.

• Hash function h is a function from the set of all search-key values 
K to the set of all bucket addresses B.

• Hash function is used to locate records for access, insertion as
well as deletion.

• Records with different search-key values may be mapped to the 
same bucket; thus entire bucket has to be searched sequentially to 
locate a record. 
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Example of Hash File Organization

• There are 10 buckets,

• The binary representation of the ith character is assumed to be the 
integer i.

• The hash function returns the sum of the binary representations of 
the characters modulo 10

– E.g. h(Perryridge) = 5    h(Round Hill) = 3   h(Brighton) = 3

Hash file organization of account file, using branch-name as key
(See figure in next slide.)
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Example of Hash File Organization

Hash file 
organization of 
account file, using 
branch-name as key

(see previous slide 
for details).
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Hash Functions
• Worst has function maps all search-key values to the same bucket; this 

makes access time proportional to the number of search-key values in 
the file.

• An ideal hash function is uniform, i.e., each bucket is assigned the 
same number of search-key values from the set of all possible values.

• Ideal hash function is random, so each bucket will have the same 
number of records assigned to it irrespective of the actual distribution
of search-key values in the file.

• Typical hash functions perform computation on the internal binary 
representation of the search-key. 
– For example, for a string search-key, the binary representations of all the 

characters in the string could be added and the sum modulo the number of 
buckets could be returned. .
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Handling of Bucket Overflows

• Bucket overflow can occur because of 
– Insufficient buckets 
– Skew in distribution of records.  This can occur due 

to two reasons:
• multiple records have same search-key value
• chosen hash function produces non-uniform distribution of 

key values

• Although the probability of bucket overflow can 
be reduced, it cannot be eliminated; it is handled 
by using overflow buckets.
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Handling of Bucket Overflows (cont.)

• Overflow chaining – the overflow buckets of a given bucket are chained 
together in a linked list.

• Above scheme is called closed hashing.
– An alternative, called open hashing, which does not use overflow buckets,  

is not suitable for database applications.
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Hash Indices

• Hashing can be used not only for file organization, but also for
index-structure creation.  

• A hash index organizes the search keys, with their associated 
record pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary indices 

– if the file itself is organized using hashing, a separate 
primary hash index on it using the same search-key is 
unnecessary.  

– However, we use the term hash index to refer to both 
secondary index structures and hash organized files. 
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Example of Hash Index
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Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed 

set of B of bucket addresses.
– Databases grow with time.  If initial number of buckets is too 

small, performance will degrade due to too much overflows.
– If file size at some point in the future is anticipated and number of 

buckets allocated accordingly, significant amount of space will be 
wasted initially.

– If database shrinks, again space will be wasted.
– One option is periodic re-organization of the file with a new hash 

function, but it is very expensive.

• These problems can be avoided by using techniques that allow 
the number of buckets to be modified dynamically. 
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Dynamic Hashing
• Good for database that grows and shrinks in size
• Allows the hash function to be modified dynamically
• Extendable hashing – one form of dynamic hashing 

– Hash function generates values over a large range — typically b-bit 
integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table of 
bucket addresses.   

– Let the length of the prefix be i bits,  0 ≤ i ≤ 32.  
– Bucket address table size = 2i. Initially i = 0
– Value of i grows and shrinks as the size of the database grows and 

shrinks.
– Multiple entries in the bucket address table may point to a bucket. 
– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing
and splitting of buckets. 



COP 4710: Indexing Page 45 Mark Llewellyn ©

Dynamic Hashing Example

1

1

1

1

0

0

0

0

0

1

the buckets

000011

000110

000101

001001

001011

010000 100011

100111

100100

100001

101001

101110

110000

110101



COP 4710: Indexing Page 46 Mark Llewellyn ©

Example: Insert Key Value 100110

10

1

1

1

1

0

0

0

0

0

1

the buckets

000011

000110

000101

001001

001011

010000 101001

101110

110000

110101
100011

100001

100111

100100

100110

Starting with structure on  
page 45 – key value 
100110 is to be inserted, 
causing overflow and 
bucket splitting.
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Example: Deletion of Key Values 001001 and 001011 

1

1

1

0

0
0

0

1

the buckets

000011

000110

000101

010000 100011

100111

100100

100001

101001

101110

110000

110101

Starting with structure 
on  page 45 – key 
values 001001 and 
001011 are deleted, 
causing underflow and  
bucket contraction.
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General Extendable Hash Structure 

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next slide for details)
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Use of Extendable Hash Structure
• Each bucket j stores a value ij; all the entries that point to the 

same bucket have the same values on the first ij bits.

• To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address 
table, and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j.  

– If there is room in the bucket j insert record in the bucket.  

– Else the bucket must be split and insertion re-attempted (next slide.)

• Overflow buckets used instead in some cases
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Updates in Extendable Hash Structure 

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij and iz to the old ij -+ 1.
– make the second half of the bucket address table entries pointing to j

to point to z
– remove and reinsert each record in bucket j.
– recompute new bucket for Kj and insert record in the bucket (further 

splitting is required if the bucket is still full)
• If i = ij (only one pointer to bucket j)

– increment i and double the size of the bucket address table.
– replace each entry in the table by two entries that point to the same 

bucket.
– recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:
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Updates in Extendable Hash Structure 
(cont.)

• When inserting a value, if the bucket is full after several splits 
(that is, i reaches some limit b) create an overflow bucket instead 
of splitting bucket entry table further.

• To delete a key value, 
– locate it in its bucket and remove it. 
– The bucket itself can be removed if it becomes empty (with 

appropriate updates to the bucket address table). 
– Coalescing of buckets can be done (can coalesce only with a 

“buddy” bucket having same value of ij and same ij –1 prefix, if it 
is present) 

– Decreasing bucket address table size is also possible
• Note: decreasing bucket address table size is an expensive 

operation and should be done only if number of buckets 
becomes much smaller than the size of the table 
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0001000
0000110
0001100

d=3

0110110
0101110
0101101
0110001

d=2

1011001
1000111
1010100

d=2

0011000
0010111

d=3

1100110
1100011

d=3

1110001
1111010
1110001
1110101

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth
Extendible Hashing Example:

Initial Situation
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0001000
0000110
0001100

d=3

1011001
1000111
1010100

d=2

0011000
0010111

d=3

1100110
1100011

d=3

1110001
1111010
1110001
1110101

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth

0110110
0110001

d=3

0101110
0101101

d=3

0111110

Extendible Hashing Example:

Insertion of key value 0111110 
causing overflow and splitting
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0001000
0000110
0001100

d=3

1000111
1001100
1000100

d=3

1100110
1100011

d=3

1110001
1111010
1110001

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth

0101110
0101101
0100011

d=3

0110110
0110001

d=3

0111110

0011000
0010111

d=3

0010100

1011001
1010111
1010100

d=3

1101011

Extendible Hashing Example:

Situation at which next insertion 
causes global level overflow 
and global splitting.



COP 4710: Indexing Page 55 Mark Llewellyn ©

0001111
0000110

d=4

1000111
1001100
1000100

d=3

1110001
1111010
1110001

d=3

key bucket

0000

0001

0010

0011

0100

0101

0110

0111

global depth = 4

bucketslocal depth

0101110
0101101
0100011

d=3

0110110
0110001

d=3

0111110

0011000
0010111

d=3

0010100

1011001
1010111
1010100

d=3

1100110
1100011

d=3

1101011

1000

1001

1010

1011

1100

1101

1110

1111

0001000
0001100

d=4

Extendible Hashing Example:

Insertion of key value 00001111 
into situation shown on page 
59, causes global level overflow 
and global splitting.
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Extendable Hashing vs. Other Schemes
• Benefits of extendable hashing:  

– Hash performance does not degrade with growth of file
– Minimal space overhead

• Disadvantages of extendable hashing
– Extra level of indirection to find desired record
– Bucket address table may itself become very big (larger than 

memory)
• Need a tree structure to locate desired record in the 

structure!
– Changing size of bucket address table is an expensive operation

• Linear hashing is an alternative mechanism which avoids these 
disadvantages at the possible cost of more bucket overflows
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Linear Hashing

• The basic idea behind linear hashing is to provide dynamic 
expansion and contraction of the hash file address space without
requiring the overhead of a directory structure.

• This is accomplished with the overhead of a single integer and a
slightly modified search algorithm.

• Suppose that the address space starts with M buckets numbered 0, 
1, 2, …, M-1 and uses a simple modulo hash function h(K)  = K 
mod M, this hash function is called the initial hash function h0.  
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Linear Hashing

• Collisions are still resolved using chaining.  However, when a 
collision occurs which leads to an overflow in any bucket, the first 
bucket in the file, bucket 0, is split into two buckets, the original 
bucket 0 and a new bucket M at the end of the file space.  The 
records originally in bucket 0 are redistributed between bucket 0 
and bucket M based upon a new hashing function h1(K) = K mod 
(2M).

• A requirement of the new hash function h1 is that any record that 
hashed to bucket 0 on hash function h0 must hash to either bucket 
0 or bucket M on hash function h1.



COP 4710: Indexing Page 59 Mark Llewellyn ©

Linear Hashing

• As further collisions leading to overflow records occur, additional 
buckets are split in the linear order 1, 2,  3, …

• If enough overflow occurs, eventually all the file buckets will be 
split, so the records in overflow are redistributed into regular
buckets using the h1 hash function via a delayed split of their 
buckets.

• In this manner we don’t need a directory structure – only a value n
to determine how many buckets have been split.  For retrieving a
record with hash key K, first apply the function h0 to K; if h0(K) < 
n, use function h1 on K because this indicates that the first bucket 
has already been split and the records from the first bucket were 
redistributed between bucket 0 and bucket M by the h1 hash 
function.  Initially, n = 0, indicating that the hash function h0 
applies to all buckets; n grows linearly as buckets are split.
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Linear Hashing
• When n = M, all the original buckets have been split and the hash function h1 

applies to all the records in the file.  At this point n is reset to 0, and any new 
collisions causing bucket overflow lead to the use of a new hashing function h2 
where h2(K) = K mod (4M).  In general, a sequence of hashing functions hj(K) 
= K mod (2j M) is used where j = 0, 1, 2, ,,,; a new hashing function hj+1is 
needed whenever all the buckets 0, 1, …, (2j M)-1 have been split and n is reset 
to 0. 

• The search algorithm required for the linear hashing technique is given below: 

• The following example will clarify the operation of linear hashing.

if n = 0

then m ← hj(K)  //m is the hash value of record with key K

else

{ m ← hj(K);

if m < n then m ← hj+1(K)  

}

search the bucket whose hash value is m (and its overflow, if any);
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Linear Hashing Example: Initial Situation
Assume that we have a 5 bucket address space with each bucket 
capable of holding two records.

Assume that our sequence of hash functions is just a modulo 
operation and that all keys are simply integer values.

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

10 20

41 31

12 72

53 33

74 64

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h0(10) = 0, h0(20) = 0

n = 0

Initial Situation



COP 4710: Indexing Page 62 Mark Llewellyn ©

Linear Hashing Example: Insert Key 63
Since this key value maps to bucket 3 and this bucket is full, a collision occurs 
with the new key value record being placed into an overflow chain.  In addition, 
the first bucket is split into two buckets, bucket 0 and bucket M with record 
redistribution occurring and n is incremented to 1.  This is shown below:

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20

41 31

12 72

53 33

74 64

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h1(10) = 5, h1(20) = 0

n = 1, 1 bucket (#0) has split.

After insert of 63

63

bucket 5 10
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Linear Hashing Example: Insert Keys 40 and 52
A subsequent insertion of the key value 52 (hash to bucket 2), will cause an overflow from 
bucket 2 and a splitting of bucket 1 as shown below.   Notice that the insertion of key 
value 40 did not cause any overflow.

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2, h0(52) = 2

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 2, 2 buckets (#0 and #1) have 
split.

After insert of 40 and 52

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

12 72

53 33

74 64

63

bucket 5 10

52

bucket 6 31
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Linear Hashing Example
Notice at this point that although two buckets have split, neither have 
been buckets to which an insertion occurred causing an overflow.

The overflowing records which caused buckets 0 and 1 to split are still 
in their respective overflow chains.

Notice too, that the insertion of key value 40 did not cause an overflow 
and thus no splitting of another bucket.

The next insertion that occurs which causes an overflow (notice that 
this insertion would not be to buckets 0, 1, 5 or 6) will cause the 
redistribution of records from bucket 2 including those in its overflow 
chain.

This is shown in the next diagram when key value 54 is inserted.
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Linear Hashing Example: Insert Key 54
A subsequent insertion of the key value 54 (hash to bucket 4), will cause an overflow from 
bucket 2 and a redistribution of its records, including those in its overflow chain. 

h0(74) = 4, h0(64) = 4, h0(54) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 3, 3 buckets (#0, #1, and #2) 
have split.

After insert of 54

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

72

53 33

74 64

63

bucket 5 10

bucket 6 31

bucket 7 12 52

54
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Linear Hashing Example: 
Now let’s assume that time has passed and more insertions have occurred to the file so that 
all of the original M buckets (0-4) have split.  At this point every record in the file has 
been hashed according to hash function h1 and there are a total of 2M buckets in the file 
(0-2M-1 or 0-9).  This situation is shown below.

h1(74) = 9, h1(64) = 4, h1(54) = 4, h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7, h1(22) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 5, all five original buckets have split.

After some period of time

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

72

53 33

64 54

bucket 5 10

bucket 6 31

bucket 7 12 52

bucket 8

bucket 9

63

74 84
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Linear Hashing Example: 
At this point, the file is twice as large (in terms of buckets) as it was initially and the value of n = M = 
5.  The hash function h1 applies to every record in the file and thus n is reset to 0 and the next 
insertion to cause an overflow will result in the next hash function h2 being used to hash the records 
from bucket 0 into two buckets, 0 and 2M.  This is shown below on the insert of key value 23 to 
bucket 3 which causes an overflow.

h1(74) = 9, h1(64) = 4, h1(54) = 4, h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7, h1(22) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 10

n = 1, 1 bucket (#0) has split.

After some period of time

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20

41

72

53 33

64 54

bucket 5 10

bucket 6 31

bucket 7 12 52

23

bucket 8

bucket 9

63

74 84

bucket 10 40
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Linear Hashing
Buckets that have been split can also be merged back together if the 
loading of the file falls below a certain threshold.  In general, the file load 
L can be defined as:  

where r is the current number of file records, bfr is the maximum number 
of records that can fit into a single bucket, and N is the current number of 
file buckets.  

Blocks are combined linearly and n is decremented appropriately.  In fact, 
the file load is typically used to trigger both splitting and contraction.  
Using this technique the file load can be kept within a desired range.  
Splits are triggered when the load exceeds a certain threshold, say 0.9, and 
contraction is triggered when the file load falls below a certain threshold, 
say 0.7.

Nbfr
rL
×

=
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Comparison of Ordered Indexing and Hashing
• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Is it desirable to optimize average access time at the expense 
of worst-case access time?

• Expected type of queries:

– Hashing is generally better at retrieving records having a 
specified value of the key.

– If range queries are common, ordered indices are to be 
preferred
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Multiple-Key Access
• Use multiple indices for certain types of queries.
• Example: 

select account-number
from account
where branch-name = “Perryridge” and balance = 1000

• Possible strategies for processing query using indices on single
attributes:
1. Use index on branch-name to find accounts with balances of $1000; 

test branch-name = “Perryridge”.
2. Use index on balance to find accounts with balances of $1000; test

branch-name = “Perryridge”.
3. Use branch-name index to find pointers to all records pertaining to 

the Perryridge branch.  Similarly use index on balance.  Take 
intersection of both sets of pointers obtained.
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Indices on Multiple Attributes
• Suppose we have an index on combined search-key(branch-name, 

balance).
• With the where clause

where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records that 
satisfy both conditions.
Using separate indices is less efficient — we may fetch many records 
(or pointers) that satisfy only one of the conditions.

• Can also efficiently handle 
where branch-name - “Perryridge” and balance < 1000

• But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the second
condition.


