
COP 4710: Indexing Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2008

Chapters 10 and 11 – Indexing

COP 4710: Database Systems
Spring 2008

Chapters 10 and 11 – Indexing

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2008

COP 4710: Indexing Page 2 Mark Llewellyn ©

Basic Concepts Behind Indexing
• Indexing mechanisms used to speed up access to desired data.

– E.g., author catalog in library
• Search Key - attribute to set of attributes used to look up records

in a file.
• An index file consists of records (called index entries) of the

form

• Index files are typically much smaller than the original file.
• Two basic kinds of indices:

– Ordered indices: search keys are stored in sorted order
– Hash indices: search keys are distributed uniformly across

“buckets” using a “hash function”.

search-key pointer

COP 4710: Indexing Page 3 Mark Llewellyn ©

Index Evaluation Metrics
• Access types: The types of access that are efficiently supported.

– Finding records with a specified attribute value.

– Finding records with an attribute value falling in a specified range of
values.

• Access time: The time required to find a particular data item, or set of items.

• Insertion time: The time it takes to insert a new data item. This value
includes the time required to find the correct place to insert, as well as the
time required to update the index structure.

• Deletion time: The time it takes to delete a data item. This value includes the
time required to find the item, as well as the time required to update the index
structure.

• Space overhead: The additional space required by an index structure.
Provided that the amount of additional space is moderate, it is usually
worthwhile to sacrifice the space to achieve improved performance.

COP 4710: Indexing Page 4 Mark Llewellyn ©

Ordered Indices
• In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.
– Also called clustering index

– The search key of a primary index is usually but not necessarily the
primary key.

• Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

• One of the oldest index schemes used in database systems. Designed
for applications that require both sequential processing of entire files as
well as random access to individual records.

COP 4710: Indexing Page 5 Mark Llewellyn ©

Dense Index Files
• Dense index — Index record appears for every search-key value

in the file.

COP 4710: Indexing Page 6 Mark Llewellyn ©

Sparse Index Files
• Sparse Index: contains index records for only some search-key

values.
– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:
– Find index record with largest search-key value < K
– Search file sequentially starting at the record to which the index

record points
• Less space and less maintenance overhead for insertions and

deletions.
• Generally slower than dense index for locating records.
• Good tradeoff: sparse index with an index entry for every block in

file, corresponding to least search-key value in the block.

COP 4710: Indexing Page 7 Mark Llewellyn ©

Example of Sparse Index Files

COP 4710: Indexing Page 8 Mark Llewellyn ©

Multi-level Indexing
• If primary index does not fit in memory, access becomes

expensive.

• To reduce number of disk accesses to index records, treat
primary index kept on disk as a sequential file and construct a
sparse index on it.
– outer index – a sparse index of primary index

– inner index – the primary index file

• If even outer index is too large to fit in main memory, yet
another level of index can be created, and so on.

• Indices at all levels must be updated on insertion or deletion
from the file.

COP 4710: Indexing Page 9 Mark Llewellyn ©

Example of
Multi-level
Indexing

COP 4710: Indexing Page 10 Mark Llewellyn ©

Index Update: Deletion

• If deleted record was the only record in the file with its particular
search-key value, the search-key is deleted from the index also.

• Single-level index deletion:

– Dense indices – deletion of search-key is similar to file record
deletion.

– Sparse indices – if an entry for the search key exists in the
index, it is deleted by replacing the entry in the index with the
next search-key value in the file (in search-key order). If the
next search-key value already has an index entry, the entry is
deleted instead of being replaced.

COP 4710: Indexing Page 11 Mark Llewellyn ©

Index Update: Insertion
• Single-level index insertion:

– Perform a lookup using the search-key value appearing in the
record to be inserted.

– Dense indices – if the search-key value does not appear in the
index, insert it.

– Sparse indices – if index stores an entry for each block of the
file, no change needs to be made to the index unless a new
block is created. In this case, the first search-key value
appearing in the new block is inserted into the index.

• Multilevel insertion (as well as deletion) algorithms are simple
extensions of the single-level algorithms

COP 4710: Indexing Page 12 Mark Llewellyn ©

Secondary Indices

• Frequently, one wants to find all the records whose values in a
certain field (which is not the search-key of the primary index)
that satisfy some condition.

– Example 1: In the account database stored sequentially by
account number, we may want to find all accounts in a
particular branch.

– Example 2: as above, but where we want to find all
accounts with a specified balance or range of balances.

• We can have a secondary index with an index record for each
search-key value; index record points to a bucket that contains
pointers to all the actual records with that particular search-key
value.

COP 4710: Indexing Page 13 Mark Llewellyn ©

Secondary Index on balance field of account

COP 4710: Indexing Page 14 Mark Llewellyn ©

Primary and Secondary Indices

• Secondary indices must be dense.

• Indices offer substantial benefits when searching for records.

• When a file is modified, every index on the file must be
updated, Updating indices imposes overhead on database
modification.

• Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

– each record access may fetch a new block from disk

COP 4710: Indexing Page 15 Mark Llewellyn ©

B+-Tree Index Files
• B+-tree indices are an alternative to indexed-sequential files.

• Disadvantage of indexed-sequential files: performance degrades
as file grows, since many overflow blocks get created. Periodic
reorganization of entire file is required.

• Advantage of B+-tree index files: automatically reorganizes itself
with small, local, changes, in the face of insertions and deletions.
Reorganization of entire file is not required to maintain
performance.

• Disadvantage of B+-trees: extra insertion/deletion overhead and
space overhead.

• Advantages of B+-trees outweigh disadvantages, and they are
used extensively.

COP 4710: Indexing Page 16 Mark Llewellyn ©

B+-Tree Index Files (cont.)

• A B+-tree is a rooted tree satisfying the following properties:
– All paths from root to leaf are of the same length (i.e., all leaves are on

the same level).

– Each node that is not a root or a leaf holds k-1 keys and k references to
subtrees where

– A leaf node holds k–1 keys where

– Special cases:

• If the root is not a leaf, it has at least 2 children.

• If the root is a leaf (that is, there are no other nodes in the tree), it can
have between 0 and (k–1) values.

⎡ ⎤ nk2/n ≤≤

⎡ ⎤ nk2/n ≤≤

COP 4710: Indexing Page 17 Mark Llewellyn ©

B+-Tree Node Structure
• Typical node

– Ki are the search-key values

– Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

• The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

COP 4710: Indexing Page 18 Mark Llewellyn ©

Leaf Nodes in B+-Trees
• For i = 1, 2, . . ., n–1, pointer Pi either points to a file record with

search-key value Ki, or to a bucket of pointers to file records,
each record having search-key value Ki. Only need bucket
structure if search-key does not form a primary key.

• If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than Lj’s search-key values

• Pn points to next leaf node in search-key order

COP 4710: Indexing Page 19 Mark Llewellyn ©

Non-Leaf Nodes in B+-Trees
• Non leaf nodes form a multi-level sparse index on the leaf nodes.

For a non-leaf node with m pointers:

– All the search-keys in the subtree to which P1 points are less
than K1

– For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi
points have values greater than or equal to Ki–1 and less than
Km–1

COP 4710: Indexing Page 20 Mark Llewellyn ©

Example of a B+-tree

B+-tree for account file (n = 3)

COP 4710: Indexing Page 21 Mark Llewellyn ©

Example of B+-tree

• Leaf nodes must have between 2 and 4 values
(⎡(n–1)/2⎤ and n –1, with n = 5).

• Non-leaf nodes other than root must have between 3 and 5
children (⎡(n/2⎤ and n with n =5).

• Root must have at least 2 children.

B+-tree for account file (n - 5)

COP 4710: Indexing Page 22 Mark Llewellyn ©

Observations about B+-trees
• Since the inter-node connections are done by pointers, “logically”

close blocks need not be “physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse
indices.

• The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches can be
conducted efficiently.

• Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time.

COP 4710: Indexing Page 23 Mark Llewellyn ©

Queries on B+-Trees
Find all records with a search-key value of k.

1. Start with the root node
1. Examine the node for the smallest search-key value > k.
2. If such a value exists, assume it is Kj. Then follow Pi to

the child node
3. Otherwise k ≥ Kn–1, where there are n pointers in the

node. Then follow Pn to the child node.
2. If the node reached by following the pointer above is not a

leaf node, repeat the above procedure on the node, and
follow the corresponding pointer.

3. Eventually reach a leaf node. If for some i, key Ki = k
follow pointer Pi to the desired record or bucket. Else no
record with search-key value k exists.

COP 4710: Indexing Page 24 Mark Llewellyn ©

Queries on B+-Trees (cont.)

• In processing a query, a path is traversed in the tree from the
root to some leaf node.

• If there are K search-key values in the file, the path is no longer
than ⎡ log⎡n/2⎤(K)⎤.

• A node is generally the same size as a disk block, typically 4
KB, and n is typically around 100 (40 bytes per index entry).

• With 1 million search key values and n = 100, at most
log50(1,000,000) = 4 nodes are accessed in a lookup.

• Contrast this with a balanced binary tree with 1 million search
key values — around 20 nodes are accessed in a lookup
– above difference is significant since every node access may

need a disk I/O, costing around 20 milliseconds!

COP 4710: Indexing Page 25 Mark Llewellyn ©

Updates on B+-Trees: Insertion
• Find the leaf node in which the search-key value would appear

• If the search-key value is already there in the leaf node, record is
added to file and if necessary a pointer is inserted into the bucket.

• If the search-key value is not there, then add the record to the
main file and create a bucket if necessary. Then:

– If there is room in the leaf node, insert (key-value, pointer)
pair in the leaf node

– Otherwise, split the node (along with the new (key-value,
pointer) entry) as discussed in the next slide.

COP 4710: Indexing Page 26 Mark Llewellyn ©

Updates on B+-Trees: Insertion (cont.)

• Splitting a node:
– take the n(search-key value, pointer) pairs (including the one being inserted)

in sorted order. Place the first ⎡ n/2 ⎤ in the original node, and the rest in a
new node.

– let the new node be p, and let k be the least key value in p. Insert (k,p) in
the parent of the node being split. If the parent is full, split it and propagate
the split further up.

• The splitting of nodes proceeds upwards till a node that is not full is found. In
the worst case the root node may be split increasing the height of the tree by 1.

Result of splitting node containing Brighton and Downtown on
inserting Clearview into the B+-tree shown on page 20 (n = 3)

COP 4710: Indexing Page 27 Mark Llewellyn ©

Updates on B+-Trees: Insertion (cont.)

before

Result of splitting node containing Brighton and Downtown on inserting Clearview

after

COP 4710: Indexing Page 28 Mark Llewellyn ©

Updates on B+-Trees: Deletion
• Find the record to be deleted, and remove it from the main file

and from the bucket (if present)

• Remove (search-key value, pointer) from the leaf node if there is
no bucket or if the bucket has become empty

• If the node has too few entries due to the removal, and the entries
in the node and a sibling fit into a single node, then

– Insert all the search-key values in the two nodes into a single
node (the one on the left), and delete the other node.

– Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted
node, from its parent, recursively using the above procedure.

COP 4710: Indexing Page 29 Mark Llewellyn ©

Updates on B+-Trees: Deletion (cont.)

• Otherwise, if the node has too few entries due to the removal, and
the entries in the node and a sibling fit into a single node, then

– Redistribute the pointers between the node and a sibling such
that both have more than the minimum number of entries.

– Update the corresponding search-key value in the parent of the
node.

• The node deletions may cascade upwards till a node which has
⎡n/2 ⎤ or more pointers is found. If the root node has only one
pointer after deletion, it is deleted and the sole child becomes the
root.

COP 4710: Indexing Page 30 Mark Llewellyn ©

Examples of B+-Tree Deletion

Before

The removal of the leaf node containing “Downtown” did not result in its parent having
too few pointers. So the cascaded deletions stopped with the deleted leaf node’s
parent.

After deleting “Downtown”

COP 4710: Indexing Page 31 Mark Llewellyn ©

Examples of B+-Tree Deletion (cont.)

• Node with “Perryridge” becomes underfull (actually empty, in this special case) and
merged with its sibling.

• As a result “Perryridge” node’s parent became underfull, and was merged with its sibling
(and an entry was deleted from their parent).

• Root node then had only one child, and was deleted and its child became the new root
node.

Before

After deletion of “Perryridge”

COP 4710: Indexing Page 32 Mark Llewellyn ©

Example of B+-tree Deletion (cont.)

• Parent of leaf containing Perryridge became underfull, and borrowed a pointer
from its left sibling.

• Search-key value in the parent’s parent changes as a result.

After deletion of “Perryridge”

Before

COP 4710: Indexing Page 33 Mark Llewellyn ©

B+-Tree File Organization
• Index file degradation problem is solved by using B+-tree

indices. Data file degradation problem is solved by using B+-tree
file organization.

• The leaf nodes in a B+-tree file organization store records, instead
of pointers.

• Since records are larger than pointers, the maximum number of
records that can be stored in a leaf node is less than the number
of pointers in a nonleaf node.

• Leaf nodes are still required to be half full.

• Insertion and deletion are handled in the same way as insertion
and deletion of entries in a B+-tree index.

COP 4710: Indexing Page 34 Mark Llewellyn ©

B+-Tree File Organization (cont.)

• Good space utilization important since records use more space than pointers.
• To improve space utilization, involve more sibling nodes in redistribution

during splits and merges
– Involving 2 siblings in redistribution (to avoid split / merge where possible)

results in each node having at least entries.

Example of B+-tree File Organization

⎣ ⎦3/2n

COP 4710: Indexing Page 35 Mark Llewellyn ©

Static Hashing
• A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

• In a hash file organization we obtain the bucket of a record
directly from its search-key value using a hash function.

• Hash function h is a function from the set of all search-key values
K to the set of all bucket addresses B.

• Hash function is used to locate records for access, insertion as
well as deletion.

• Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

COP 4710: Indexing Page 36 Mark Llewellyn ©

Example of Hash File Organization

• There are 10 buckets,

• The binary representation of the ith character is assumed to be the
integer i.

• The hash function returns the sum of the binary representations of
the characters modulo 10

– E.g. h(Perryridge) = 5 h(Round Hill) = 3 h(Brighton) = 3

Hash file organization of account file, using branch-name as key
(See figure in next slide.)

COP 4710: Indexing Page 37 Mark Llewellyn ©

Example of Hash File Organization

Hash file
organization of
account file, using
branch-name as key

(see previous slide
for details).

COP 4710: Indexing Page 38 Mark Llewellyn ©

Hash Functions
• Worst has function maps all search-key values to the same bucket; this

makes access time proportional to the number of search-key values in
the file.

• An ideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

• Ideal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution
of search-key values in the file.

• Typical hash functions perform computation on the internal binary
representation of the search-key.
– For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number of
buckets could be returned. .

COP 4710: Indexing Page 39 Mark Llewellyn ©

Handling of Bucket Overflows

• Bucket overflow can occur because of
– Insufficient buckets
– Skew in distribution of records. This can occur due

to two reasons:
• multiple records have same search-key value
• chosen hash function produces non-uniform distribution of

key values

• Although the probability of bucket overflow can
be reduced, it cannot be eliminated; it is handled
by using overflow buckets.

COP 4710: Indexing Page 40 Mark Llewellyn ©

Handling of Bucket Overflows (cont.)

• Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

• Above scheme is called closed hashing.
– An alternative, called open hashing, which does not use overflow buckets,

is not suitable for database applications.

COP 4710: Indexing Page 41 Mark Llewellyn ©

Hash Indices

• Hashing can be used not only for file organization, but also for
index-structure creation.

• A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.

• Strictly speaking, hash indices are always secondary indices

– if the file itself is organized using hashing, a separate
primary hash index on it using the same search-key is
unnecessary.

– However, we use the term hash index to refer to both
secondary index structures and hash organized files.

COP 4710: Indexing Page 42 Mark Llewellyn ©

Example of Hash Index

COP 4710: Indexing Page 43 Mark Llewellyn ©

Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed

set of B of bucket addresses.
– Databases grow with time. If initial number of buckets is too

small, performance will degrade due to too much overflows.
– If file size at some point in the future is anticipated and number of

buckets allocated accordingly, significant amount of space will be
wasted initially.

– If database shrinks, again space will be wasted.
– One option is periodic re-organization of the file with a new hash

function, but it is very expensive.

• These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

COP 4710: Indexing Page 44 Mark Llewellyn ©

Dynamic Hashing
• Good for database that grows and shrinks in size
• Allows the hash function to be modified dynamically
• Extendable hashing – one form of dynamic hashing

– Hash function generates values over a large range — typically b-bit
integers, with b = 32.

– At any time use only a prefix of the hash function to index into a table of
bucket addresses.

– Let the length of the prefix be i bits, 0 ≤ i ≤ 32.
– Bucket address table size = 2i. Initially i = 0
– Value of i grows and shrinks as the size of the database grows and

shrinks.
– Multiple entries in the bucket address table may point to a bucket.
– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing
and splitting of buckets.

COP 4710: Indexing Page 45 Mark Llewellyn ©

Dynamic Hashing Example

1

1

1

1

0

0

0

0

0

1

the buckets

000011

000110

000101

001001

001011

010000 100011

100111

100100

100001

101001

101110

110000

110101

COP 4710: Indexing Page 46 Mark Llewellyn ©

Example: Insert Key Value 100110

10

1

1

1

1

0

0

0

0

0

1

the buckets

000011

000110

000101

001001

001011

010000 101001

101110

110000

110101
100011

100001

100111

100100

100110

Starting with structure on
page 45 – key value
100110 is to be inserted,
causing overflow and
bucket splitting.

COP 4710: Indexing Page 47 Mark Llewellyn ©

Example: Deletion of Key Values 001001 and 001011

1

1

1

0

0
0

0

1

the buckets

000011

000110

000101

010000 100011

100111

100100

100001

101001

101110

110000

110101

Starting with structure
on page 45 – key
values 001001 and
001011 are deleted,
causing underflow and
bucket contraction.

COP 4710: Indexing Page 48 Mark Llewellyn ©

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1 (see next slide for details)

COP 4710: Indexing Page 49 Mark Llewellyn ©

Use of Extendable Hash Structure
• Each bucket j stores a value ij; all the entries that point to the

same bucket have the same values on the first ij bits.

• To locate the bucket containing search-key Kj:
1. Compute h(Kj) = X

2. Use the first i high order bits of X as a displacement into bucket address
table, and follow the pointer to appropriate bucket

• To insert a record with search-key value Kj

– follow same procedure as look-up and locate the bucket, say j.

– If there is room in the bucket j insert record in the bucket.

– Else the bucket must be split and insertion re-attempted (next slide.)

• Overflow buckets used instead in some cases

COP 4710: Indexing Page 50 Mark Llewellyn ©

Updates in Extendable Hash Structure

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij and iz to the old ij -+ 1.
– make the second half of the bucket address table entries pointing to j

to point to z
– remove and reinsert each record in bucket j.
– recompute new bucket for Kj and insert record in the bucket (further

splitting is required if the bucket is still full)
• If i = ij (only one pointer to bucket j)

– increment i and double the size of the bucket address table.
– replace each entry in the table by two entries that point to the same

bucket.
– recompute new bucket address table entry for Kj

Now i > ij so use the first case above.

To split a bucket j when inserting record with search-key value Kj:

COP 4710: Indexing Page 51 Mark Llewellyn ©

Updates in Extendable Hash Structure
(cont.)

• When inserting a value, if the bucket is full after several splits
(that is, i reaches some limit b) create an overflow bucket instead
of splitting bucket entry table further.

• To delete a key value,
– locate it in its bucket and remove it.
– The bucket itself can be removed if it becomes empty (with

appropriate updates to the bucket address table).
– Coalescing of buckets can be done (can coalesce only with a

“buddy” bucket having same value of ij and same ij –1 prefix, if it
is present)

– Decreasing bucket address table size is also possible
• Note: decreasing bucket address table size is an expensive

operation and should be done only if number of buckets
becomes much smaller than the size of the table

COP 4710: Indexing Page 52 Mark Llewellyn ©

0001000
0000110
0001100

d=3

0110110
0101110
0101101
0110001

d=2

1011001
1000111
1010100

d=2

0011000
0010111

d=3

1100110
1100011

d=3

1110001
1111010
1110001
1110101

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth
Extendible Hashing Example:

Initial Situation

COP 4710: Indexing Page 53 Mark Llewellyn ©

0001000
0000110
0001100

d=3

1011001
1000111
1010100

d=2

0011000
0010111

d=3

1100110
1100011

d=3

1110001
1111010
1110001
1110101

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth

0110110
0110001

d=3

0101110
0101101

d=3

0111110

Extendible Hashing Example:

Insertion of key value 0111110
causing overflow and splitting

COP 4710: Indexing Page 54 Mark Llewellyn ©

0001000
0000110
0001100

d=3

1000111
1001100
1000100

d=3

1100110
1100011

d=3

1110001
1111010
1110001

d=3

key bucket

000

001

010

011

100

101

110

111

global depth = 3

bucketslocal depth

0101110
0101101
0100011

d=3

0110110
0110001

d=3

0111110

0011000
0010111

d=3

0010100

1011001
1010111
1010100

d=3

1101011

Extendible Hashing Example:

Situation at which next insertion
causes global level overflow
and global splitting.

COP 4710: Indexing Page 55 Mark Llewellyn ©

0001111
0000110

d=4

1000111
1001100
1000100

d=3

1110001
1111010
1110001

d=3

key bucket

0000

0001

0010

0011

0100

0101

0110

0111

global depth = 4

bucketslocal depth

0101110
0101101
0100011

d=3

0110110
0110001

d=3

0111110

0011000
0010111

d=3

0010100

1011001
1010111
1010100

d=3

1100110
1100011

d=3

1101011

1000

1001

1010

1011

1100

1101

1110

1111

0001000
0001100

d=4

Extendible Hashing Example:

Insertion of key value 00001111
into situation shown on page
59, causes global level overflow
and global splitting.

COP 4710: Indexing Page 56 Mark Llewellyn ©

Extendable Hashing vs. Other Schemes
• Benefits of extendable hashing:

– Hash performance does not degrade with growth of file
– Minimal space overhead

• Disadvantages of extendable hashing
– Extra level of indirection to find desired record
– Bucket address table may itself become very big (larger than

memory)
• Need a tree structure to locate desired record in the

structure!
– Changing size of bucket address table is an expensive operation

• Linear hashing is an alternative mechanism which avoids these
disadvantages at the possible cost of more bucket overflows

COP 4710: Indexing Page 57 Mark Llewellyn ©

Linear Hashing

• The basic idea behind linear hashing is to provide dynamic
expansion and contraction of the hash file address space without
requiring the overhead of a directory structure.

• This is accomplished with the overhead of a single integer and a
slightly modified search algorithm.

• Suppose that the address space starts with M buckets numbered 0,
1, 2, …, M-1 and uses a simple modulo hash function h(K) = K
mod M, this hash function is called the initial hash function h0.

COP 4710: Indexing Page 58 Mark Llewellyn ©

Linear Hashing

• Collisions are still resolved using chaining. However, when a
collision occurs which leads to an overflow in any bucket, the first
bucket in the file, bucket 0, is split into two buckets, the original
bucket 0 and a new bucket M at the end of the file space. The
records originally in bucket 0 are redistributed between bucket 0
and bucket M based upon a new hashing function h1(K) = K mod
(2M).

• A requirement of the new hash function h1 is that any record that
hashed to bucket 0 on hash function h0 must hash to either bucket
0 or bucket M on hash function h1.

COP 4710: Indexing Page 59 Mark Llewellyn ©

Linear Hashing

• As further collisions leading to overflow records occur, additional
buckets are split in the linear order 1, 2, 3, …

• If enough overflow occurs, eventually all the file buckets will be
split, so the records in overflow are redistributed into regular
buckets using the h1 hash function via a delayed split of their
buckets.

• In this manner we don’t need a directory structure – only a value n
to determine how many buckets have been split. For retrieving a
record with hash key K, first apply the function h0 to K; if h0(K) <
n, use function h1 on K because this indicates that the first bucket
has already been split and the records from the first bucket were
redistributed between bucket 0 and bucket M by the h1 hash
function. Initially, n = 0, indicating that the hash function h0
applies to all buckets; n grows linearly as buckets are split.

COP 4710: Indexing Page 60 Mark Llewellyn ©

Linear Hashing
• When n = M, all the original buckets have been split and the hash function h1

applies to all the records in the file. At this point n is reset to 0, and any new
collisions causing bucket overflow lead to the use of a new hashing function h2
where h2(K) = K mod (4M). In general, a sequence of hashing functions hj(K)
= K mod (2j M) is used where j = 0, 1, 2, ,,,; a new hashing function hj+1is
needed whenever all the buckets 0, 1, …, (2j M)-1 have been split and n is reset
to 0.

• The search algorithm required for the linear hashing technique is given below:

• The following example will clarify the operation of linear hashing.

if n = 0

then m ← hj(K) //m is the hash value of record with key K

else

{ m ← hj(K);

if m < n then m ← hj+1(K)

}

search the bucket whose hash value is m (and its overflow, if any);

COP 4710: Indexing Page 61 Mark Llewellyn ©

Linear Hashing Example: Initial Situation
Assume that we have a 5 bucket address space with each bucket
capable of holding two records.

Assume that our sequence of hash functions is just a modulo
operation and that all keys are simply integer values.

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

10 20

41 31

12 72

53 33

74 64

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h0(10) = 0, h0(20) = 0

n = 0

Initial Situation

COP 4710: Indexing Page 62 Mark Llewellyn ©

Linear Hashing Example: Insert Key 63
Since this key value maps to bucket 3 and this bucket is full, a collision occurs
with the new key value record being placed into an overflow chain. In addition,
the first bucket is split into two buckets, bucket 0 and bucket M with record
redistribution occurring and n is incremented to 1. This is shown below:

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20

41 31

12 72

53 33

74 64

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2

h0(41) = 1, h0(31) = 1

h1(10) = 5, h1(20) = 0

n = 1, 1 bucket (#0) has split.

After insert of 63

63

bucket 5 10

COP 4710: Indexing Page 63 Mark Llewellyn ©

Linear Hashing Example: Insert Keys 40 and 52
A subsequent insertion of the key value 52 (hash to bucket 2), will cause an overflow from
bucket 2 and a splitting of bucket 1 as shown below. Notice that the insertion of key
value 40 did not cause any overflow.

h0(74) = 4, h0(64) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h0(12) = 2, h0(72) = 2, h0(52) = 2

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 2, 2 buckets (#0 and #1) have
split.

After insert of 40 and 52

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

12 72

53 33

74 64

63

bucket 5 10

52

bucket 6 31

COP 4710: Indexing Page 64 Mark Llewellyn ©

Linear Hashing Example
Notice at this point that although two buckets have split, neither have
been buckets to which an insertion occurred causing an overflow.

The overflowing records which caused buckets 0 and 1 to split are still
in their respective overflow chains.

Notice too, that the insertion of key value 40 did not cause an overflow
and thus no splitting of another bucket.

The next insertion that occurs which causes an overflow (notice that
this insertion would not be to buckets 0, 1, 5 or 6) will cause the
redistribution of records from bucket 2 including those in its overflow
chain.

This is shown in the next diagram when key value 54 is inserted.

COP 4710: Indexing Page 65 Mark Llewellyn ©

Linear Hashing Example: Insert Key 54
A subsequent insertion of the key value 54 (hash to bucket 4), will cause an overflow from
bucket 2 and a redistribution of its records, including those in its overflow chain.

h0(74) = 4, h0(64) = 4, h0(54) = 4

h0(53) = 3, h0(33) = 3, h0(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 3, 3 buckets (#0, #1, and #2)
have split.

After insert of 54

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

72

53 33

74 64

63

bucket 5 10

bucket 6 31

bucket 7 12 52

54

COP 4710: Indexing Page 66 Mark Llewellyn ©

Linear Hashing Example:
Now let’s assume that time has passed and more insertions have occurred to the file so that
all of the original M buckets (0-4) have split. At this point every record in the file has
been hashed according to hash function h1 and there are a total of 2M buckets in the file
(0-2M-1 or 0-9). This situation is shown below.

h1(74) = 9, h1(64) = 4, h1(54) = 4, h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7, h1(22) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 0

n = 5, all five original buckets have split.

After some period of time

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20 40

41

72

53 33

64 54

bucket 5 10

bucket 6 31

bucket 7 12 52

bucket 8

bucket 9

63

74 84

COP 4710: Indexing Page 67 Mark Llewellyn ©

Linear Hashing Example:
At this point, the file is twice as large (in terms of buckets) as it was initially and the value of n = M =
5. The hash function h1 applies to every record in the file and thus n is reset to 0 and the next
insertion to cause an overflow will result in the next hash function h2 being used to hash the records
from bucket 0 into two buckets, 0 and 2M. This is shown below on the insert of key value 23 to
bucket 3 which causes an overflow.

h1(74) = 9, h1(64) = 4, h1(54) = 4, h1(84) = 9

h1(53) = 3, h1(33) = 3, h1(63) = 3

h1(12) = 7, h1(72) = 2, h1(52) = 7, h1(22) = 7

h1(41) = 1, h1(31) = 6

h1(10) = 5, h1(20) = 0, h1(40) = 10

n = 1, 1 bucket (#0) has split.

After some period of time

bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

20

41

72

53 33

64 54

bucket 5 10

bucket 6 31

bucket 7 12 52

23

bucket 8

bucket 9

63

74 84

bucket 10 40

COP 4710: Indexing Page 68 Mark Llewellyn ©

Linear Hashing
Buckets that have been split can also be merged back together if the
loading of the file falls below a certain threshold. In general, the file load
L can be defined as:

where r is the current number of file records, bfr is the maximum number
of records that can fit into a single bucket, and N is the current number of
file buckets.

Blocks are combined linearly and n is decremented appropriately. In fact,
the file load is typically used to trigger both splitting and contraction.
Using this technique the file load can be kept within a desired range.
Splits are triggered when the load exceeds a certain threshold, say 0.9, and
contraction is triggered when the file load falls below a certain threshold,
say 0.7.

Nbfr
rL
×

=

COP 4710: Indexing Page 69 Mark Llewellyn ©

Comparison of Ordered Indexing and Hashing
• Cost of periodic re-organization

• Relative frequency of insertions and deletions

• Is it desirable to optimize average access time at the expense
of worst-case access time?

• Expected type of queries:

– Hashing is generally better at retrieving records having a
specified value of the key.

– If range queries are common, ordered indices are to be
preferred

COP 4710: Indexing Page 70 Mark Llewellyn ©

Multiple-Key Access
• Use multiple indices for certain types of queries.
• Example:

select account-number
from account
where branch-name = “Perryridge” and balance = 1000

• Possible strategies for processing query using indices on single
attributes:
1. Use index on branch-name to find accounts with balances of $1000;

test branch-name = “Perryridge”.
2. Use index on balance to find accounts with balances of $1000; test

branch-name = “Perryridge”.
3. Use branch-name index to find pointers to all records pertaining to

the Perryridge branch. Similarly use index on balance. Take
intersection of both sets of pointers obtained.

COP 4710: Indexing Page 71 Mark Llewellyn ©

Indices on Multiple Attributes
• Suppose we have an index on combined search-key(branch-name,

balance).
• With the where clause

where branch-name = “Perryridge” and balance = 1000
the index on the combined search-key will fetch only records that
satisfy both conditions.
Using separate indices is less efficient — we may fetch many records
(or pointers) that satisfy only one of the conditions.

• Can also efficiently handle
where branch-name - “Perryridge” and balance < 1000

• But cannot efficiently handle
where branch-name < “Perryridge” and balance = 1000
May fetch many records that satisfy the first but not the second
condition.

